Los neutrinos son el nuevo WiFi

Alguna vez os hemos hablado de neutrinos. Os explicamos lo que eran, descubrimos que no iban más rápidos que la luz y os contamos la historia de Carlos, el físico que se ha ido hasta la Antártida para cazar neutrinos en el día más largo de su vida.

Pero parece que los físicos van más allá. Como sabéis, los neutrinos son partículas con muy poca masa. Muy poca quiere decir que pesan mil millones de veces menos que un átomo de hidrógeno. Por ello, atraviesan la materia con muchísima facilidad y por tanto, son los candidatos ideales a transmitir información de manera inalámbrica. Imaginad una radio o una WiFi sin las interferencias de las paredes o los problemas que da el estar lejos del router.

Unos físicos de la Universidad de California han conseguido hacer esto. Han codificado la palabra neutrino en código binario y la han enviado a través de -atención- 240 metros de pared de dura roca.

Dedicado a los más frikis, ‘neutrino’ en binario es:

0110111001100101011101010111010001110010011010010110111001101111

El problema es que, de momento, para generar los neutrinos que envían la señal se necesita un acelerador de partículas de 363 millones de dólares como el que hay en el Fermilab de Chicago. Pero todo se andará. Igual dentro de unos años nuestros móviles se conectan a velocidades estelares gracias a los simpáticos neutrinos.

Fuentes: FayerWayery PhysOrg

Cazando neutrinos

Alguna vez en Electrones os hemos hablado de neutrinos.De hecho, hace no mucho, os hablamos de una instalación en Italia que se encarga de medir la velocidad que llevan. Pero, ¿para qué narices sirven?

Los neutrinos son unas partículas que llegan a la tierra desde el espacio, procedentes de reacciones nucleares que se producen en el corazón de las estrellas y otros procesos violentos como explosiones de supernovas. Es muy difícil detectar los neutrinos, ya que interaccionan muy poco con la materia. Para ello se desarrollan detectores especiales como el KM3NET, un detector enorme de un kilómetro cúbico de volumen bajo el océano, o el ICECUBE, un detector que se sumerge hasta 2,4 kilómetros de profundidad en el hielo antártico. Estos detectores están equipados de sensores de luz ultrasensibles, dado que los neutrinos, al chocar con la materia (como el agua del océano o el hielo de la Antártida) generan un pequeñísimo destello.

Estudiar la procedencia de los neutrinos es interesante porque puede ayudarnos a comprender mejor la historia de nuestro universo. Pero, ¿quién hay en el polo Sur, detectando neutrinos?

Carlos Pobes, en el Polo Sur geográfico
Carlos Pobes, en el Polo Sur geográfico

Quizás recordéis, por un espectáculo y un especial del blog que preparamos juntos, a Carlos Pobes, doctor en Física. Este joven físico se ha lanzado a la aventura y se fue el diciembre pasado a la Antártida, a trabajar con un equipo de la Universidad de Wisconsin-Madison en el detector ICECUBE. Es el primer tercer español que va a pasar el invierno polar en la base. Igual os suena de haberlo visto recientemente en el programa Desafío Extremo (Cuatro), presentado por Jesús Calleja.

Como yo no soy un experto en neutrinos, no me atrevo a explicaros mucho más. Carlos quizás nos escriba un artículo cuando tenga algo de tiempo, pero mientras tanto, os animo a visitar un blog que lanzó (y actualiza muy frecuentemente) para contar sus andanzas en tierra de pingüinos y neutrinos. Daos una vuelta por «El día más largo de mi vida» y admirad las fotos del paisaje, leed los artículos con interés y curiosead qué comen en el polo cuando están totalmente aislados del mundo.

X. Enigmáticos neutrinos

km3net-geometry-cylinder-example.jpg (JPEG Imagen, 1744x2475 pixels) - Escalado (25%)

Ocultos en las profundidades, como miles de ojos, unos detectores de luz escudriñan el fondo oceánico para detectar las imperceptibles estelas que revelen la interacción de neutrinos de alta energía. Estas partículas han atravesado enormes distancias sin ser alteradas por el medio intergaláctico llegando hasta la Tierra. Una mínima fracción podrá ser detectada bajo el océano permitiendo desvelar algunos de los secretos más candentes del Universo.

EXPO_ASPERA_PROP2_G.pdf (p?na 10 de 15)

La supernova de 1987 fue la primera oportunidad de detectar neutrinos procedentes de una fuente lejana. Emitidos desde el mismísimo corazón de las estrellas, estas partículas nos permiten tener acceso a algunos de los procesos más violentos del Universo como las supernovas (vista aquí en rayos gamma), agujeros negros… Esta nueva ventana al Universo está limitada por la débil interacción de los neutrinos con la materia. Detectar los muones inducidos por esta interacción requiere enormes detectores en profundidad para estar blindados de la radiación cósmica que existe en superficie. El océano ofrece un entorno ideal para distribuir miles de detectores de luz. Con un volumen de un kilómetro cúbico, el telescopio submarino KM3NeT será capaz de detectar cientos de eventos al año.

Imágenes: «Telescopio KM3NeT» (AspERA) y «Supernova SN1987A» (NASA).