y XV. La Física sigue evolucionando

EXPO_ASPERA_PROP2_G.pdf (página 15 de 15)

¿Cuál es la naturaleza de la Materia Oscura? ¿Qué es la Energía Oscura que acelera la expansión del universo? ¿Cuál es la masa de los neutrinos? La teoría del Big Bang supuso una herramienta para entender la historia del Universo, pero aún surgen cuestiones sobre la evolución de la materia a todas las escalas. Las Astropartículas son probablemente una de las claves en todos estos misterios. Una mejor comprensión de estos nuevos mensajeros ofrecerá una marea de nuevos conocimientos. Pero surge otra pregunta: ¿encajarán estos descubrimientos en nuestras teorías actuales o nos obligarán a desarrollar una nueva física, revolucionando una vez más nuestra visión del mundo?

Debido a la Materia Oscura, la estructura del Universo se asemeja a una gran tela de araña. ¿Aceleradores? ¿Experimentos de Astropartículas? Sea de donde sea que lleguen nuevas revoluciones, cambiarán seguro nuestra concepción de la materia, el Universo y su historia. Por otro lado, proyectos como LAGUNA pueden arrojar luz sobre los secretos de los neutrinos y sus extrañas propiedades. ¿Abrirán una nueva era en la Física más allá del Modelo Estándar?

XIV. Transferencia de conocimiento

Los retos tecnológicos de los físicos estimulan a los científicos e ingenieros. Los aparatos desarrollados para estas investigaciones básicas encuentran otras aplicaciones y algunos permiten por ejemplo explorar el interior de los volcanes, el cuerpo humano, la corteza terrestre, monitorizar la atmósfera y los océanos…

Para detectar las señales inducidas por los hipotéticos WIMPs, partículas masivas postuladas como posibles constituyentes de la materia oscura, algunos experimentos alojados en laboratorios subterráneos utilizan detectores que trabajan a temperaturas cercanas al cero absoluto y sensibles a variaciones de temperatura de millonésimas de grado. Los laboratorios subterráneos ofrecen también el entorno ideal para medidas de bajas contaminaciones y otras aplicaciones.  Por otro lado, los detectores de rayos cósmicos pueden utilizarse para inspeccionar el interior de volcanes o pirámides, como observatorios oceánicos para estudiar los fondos abisales.

Imagen: El volcán Sarychev en erupción (NASA).

XIII. Instrumentos revolucionarios

En la oscuridad de laboratorios subterráneos, bajo el mar o en el espacio, los científicos inventan nuevos instrumentos, mejoran la sensibilidad de sus detectores y reducen el ruido de fondo para seguir extendiendo los límites de nuestra comprensión de la materia y el Universo, de lo infinitamente pequeño y lo infinitamente grande.

Para comprender la materia es necesario desentrañar su estructura íntima y las reglas de ensamblaje de sus distintos componentes, por ejemplo descomponiéndola. Los físicos observan el resultado de las colisiones de partículas aceleradas a gran velocidad. En el CERN, el LHC, con sus 27 kilómetros de circunferencia es la última joya de estos aceleradores. Acelerará protones al 99.9999991% de la velocidad de la luz, dando 11245 vueltas al acelerador por segundo. Los experimentos alojados a lo largo del anillo estudiarán la materia buscando el bosón de Higgs, antimateria o materia oscura, es decir, algunas de las cuestiones más excitantes actualmente en la Física.

VIII. En busca de la materia oscura

: Cluster Crash Illuminates Dark Matter Conundrum

Nuestras observaciones nos demuestran que la mayor parte del Universo es indetectable por nuestros telescopios. Hemos detectado la presencia de materia que no emite luz y que podría representar hasta un 25% del contenido total del Universo. Esta materia oscura ha de estar compuesta por partículas por ahora desconocidas, casi indetectables, pues interaccionan muy débilmente con la materia. Uno de los principales retos de la Física de Astropartículas es detectar estas partículas y desvelar su naturaleza.

Las estrellas en el seno de las galaxias, giran demasiado deprisa. Para explicar que no salgan despedidas las galaxias deben contener una importante cantidad de materia no luminosa. Existen numerosas evidencias que soportan esta tesis. De esta forma, sólo el 5% del Universo está compuesto por materia visible. El 25% es Materia Oscura, y el 70% restante es un componente incluso más enigmático que se ha denominado “Energía Oscura”. Al tiempo que algunos experimentos intentan detectar de forma directa esta materia oscura en el seno de laboratorios subterráneos, diversos métodos permiten detectarla también de forma indirecta. En la imagen, el cúmulo de Abel 520 donde se representa en rojo la materia ordinaria, y en azul la materia oscura observada gracias a efectos de lente gravitacional.

Imagen: «Un choque de cúmulos ilumina la materia oscura» (NASA Images).

Teruel tendrá un telescopio único

En el pico del Buitre (Javalambre, Teruel) se va ha construir un telescopio único en Europa que estará dedicado a la investigación de la materia oscura del Universo. El estudio de la materia oscura es una de las prioridades científicas de la actualidad (la número uno según Science) y por ello el Gobierno de Aragón ha creado una fundación que financiará el montaje del telescopio y las investigaciones de la «Javalambre Astronomic Survey». El proyecto está dirigido por Mariano Moles, investigador del IAA-CSIC. Se ha escogido ése pico en concreto por ser uno de los lugares con menos contaminación lumínica de Europa, lo cual es, obviamente, una gran ventaja para poder observar el espacio.

De momento y según los responsables del Gobierno de Aragón, se cuenta con 12 millones de euros para el telescopio y el comienzo de las investigaciones. Menos da un pedrusco.

Esperemos que el proyecto funcione, que haya muchos físicos aragoneses implicados y que Teruel se convierta en un referente, un ejemplo a seguir en el estudio del espacio.

Leído en ElMundo.es