La doble rendija (y II)

Para comprender bien este artículo es conveniente que hayas leído antes nuestro especial sobre el átomo (I, II y III) y la primera parte sobre la doble rendija.

Hola de nuevo. Bienvenidos a un nuevo artículo de física cuántica en Electrones Excitados, la web en la que cada vez sabemos más y entendemos menos. Los demás redactores me han dicho que no juegue con vuestra salud mental y me piden artículos sencillos para no perder lectores por implosión cerebral, pero hoy le voy a hacer menos caso que de costumbre, y vamos a meternos de lleno en el meollo de la cuestión. Si no te has leído el resto de artículos de cuántica, igual éste te resulta algo confuso (si algún físico me lee, se indignará de la simplificación que realizo, pero ya habrá tiempo para ir precisando términos).

En el artículo anterior veíamos cómo los físicos en 1900 habían bombardeado una doble rendija con electrones disparados uno a uno y de cómo éstos, inexplicablemente, se habían comportado como si fueran una onda, cosa que sólo podía pasar, paradójicamente, si eran disparados a chorro o en masa. La tercera fase del experimento consistió en colocar un observador, es decir, algo que permitiera ver qué pasaba cuando el electrón disparado por el cañón de partículas llegaba a la doble rendija. El electrón podía elegir el camino de la rendija uno o la rendija dos, sólo uno de ellos. A partir de aquí me vais a perdonar, la cosa se vuelve complicada y apasionante.

Lo que pensaron entonces era que también podría estar pasando que el electrón eligiera los dos caminos a la vez. Pensaban que el electrón debía interferir con algo para dibujar un patrón de interferencia, y ese algo sólo podía ser… él mismo. Con esto se refieren a que de alguna manera, el electrón se dividía antes de las rendijas, pasaba por ellas y luego las dos partes chocaban al otro lado, y en éste choque, se comportaba como onda y dibujaba el patrón de interferencia. Era descabellado, pero no se lo podían explicar de otra forma y para comprobar eso era necesario observar directamente al electrón cuando pasaba por las rendijas. Pero oh sorpresa. Cuando se modificó el experimento y se introdujo un instrumento de medición que describiera el camino que hacía el electrón, o sea cuando se lo observó, el electrón… dejó de dibujar un patrón de interferencia. Sólo por ser observado.

De locura. Eso significa ni más ni menos que la naturaleza de la materia es ambigua del todo, y he aquí el quid de la cuestión. Las partículas se comportaban a veces como ondas, estaba claro. Pero la famosa dualidad onda-corpúsculo no era una cuestión de que la materia fuera ambas cosas, sino de que la materia a veces mostraba comportamiento de onda y otras de partícula pero cómo se comportaba dependía del tipo de experimento, y lo que es peor, no se podía diseñar un experimento que mostrara ambas cosas.

¿Demasiado meollo en la cuestión? Intentaré explicarme. Si decimos que algo es una onda o un corpúsculo, no nos estamos refiriendo a si son puntitos o si son contracciones y dilataciones de algo, sino que nos referimos simplemente a lo que vemos que hacen. Los puntos en la pared del experimento de la doble rendija no son los electrones, sino el efecto del electrón, sea lo que sea, en una pared sensible a su energía. Y eso es lo que vemos: efectos. Quedaos con ésta conclusión: podemos experimentar con la materia, pero los experimentos en sí, nos muestran efectos propios de la idea de onda o de la idea de cuerpo, lo que quiere decir que la materia no es exactamente ninguna de las dos cosas. Ya no podemos decir que es las dos cosas, ni que a veces es una y otras veces otra. Y existen experimentos de los que hablaremos más adelante que demuestran que una manera u otra de observar la luz o las partículas provocan que veamos “ondas” o veamos “partículas”. Esa naturaleza ambigua de la materia es lo que los científicos explicaron como que el electrón “se dividía” antes de la rendija. Eso es porque el electrón no es una partícula que oscile como una onda, sino que el electrón es una oscilación, que como tal, puede pasar por ambos lados y llegar al otro lado como puede llegar una onda.

En sucesivos artículos intentaremos desarrollar más éstas ideas, para comprender qué es lo que pasa con el electrón en la doble rendija, pero ya os adelanto que aunque existen algunas ideas fijas sobre el comportamiento de la materia no todo el mundo está de acuerdo en lo que son las cosas. Como ya decimos en Electrones, sabemos muchas cosas, pero no entendemos nada de nada.

 

La sustancia más cara del mundo

¿Sabéis cuál es la sustancia más cara del mundo? ¿El oro? ¿Los diamantes? ¿El grafeno? Os sorprenderá la respuesta, seguro. La sustancia más cara del mundo es la antimateria.

Pero, ¿qué es eso? Para comprenderlo hay que entender primero de qué está hecha la materia. Toda la materia que conocemos está constituida por átomos, pequeñas esferas de los distintos elementos. La teoría atomista surgió en Grecia en la antigüedad. Entonces se creía que los átomos eran indivisibles, pero hoy se sabe que están constituidos por un núcleo con unas partículas llamadas neutrones (sin carga) y protones (cargados positivamente) y una corteza externa de otras partículas más pequeñas llamadas electrones (cargados negativamente).

La antimateria es una sustancia que está compuesta de átomos con partículas «contrarias». Los antiprotones son negativos y los antielectrones (o positrones) son positivos. Cuando una partícula de materia y su gemela de antimateria se encuentran, se aniquilan mutuamente convirtiendo toda su masa en energía. Precisamente por esto es tan difícil y cara de fabricar: hay que evitar que una vez fabricada la antimateria se encuentre con materia. Esto es tan complicado que tan sólo el 1% de la antimateria creada «sobrevive» a la aniquilación estabilizada en campos magnéticos. El proceso además requiere instalaciones enormes y cantidades inimaginables de energía. Es por esto que la antimateria es la sustancia más cara. La NASA estima su coste real en unos 60.000 millones de dólares el miligramo. Un miligramo de oro, por ejemplo, cuesta menos de 5 céntimos.

Fabricar antimateria parece una locura, pero las antipartículas pueden ser muy útiles. Si queréis saber cómo, no dejéis de leer Electrones Excitados.com

XIII. Instrumentos revolucionarios

En la oscuridad de laboratorios subterráneos, bajo el mar o en el espacio, los científicos inventan nuevos instrumentos, mejoran la sensibilidad de sus detectores y reducen el ruido de fondo para seguir extendiendo los límites de nuestra comprensión de la materia y el Universo, de lo infinitamente pequeño y lo infinitamente grande.

Para comprender la materia es necesario desentrañar su estructura íntima y las reglas de ensamblaje de sus distintos componentes, por ejemplo descomponiéndola. Los físicos observan el resultado de las colisiones de partículas aceleradas a gran velocidad. En el CERN, el LHC, con sus 27 kilómetros de circunferencia es la última joya de estos aceleradores. Acelerará protones al 99.9999991% de la velocidad de la luz, dando 11245 vueltas al acelerador por segundo. Los experimentos alojados a lo largo del anillo estudiarán la materia buscando el bosón de Higgs, antimateria o materia oscura, es decir, algunas de las cuestiones más excitantes actualmente en la Física.

Los Nobel científicos 2008

Es una cosa que seguramente ya sabréis todos vosotros, pero me parecía que había que nombrar al menos a los premiados éste año con los Nobel de Física, Química y Medicina.

MEDICINA

Ha sido premiado Harald zur Hausen, alemán, por descubrir el virus del papiloma humano, causante del cáncer de cuello de útero. También han sido galardonados los investigadores franceses Françoise Barré-Sinoussi y Luc Montagnier, por su descubrimiento del VIH que, como es el causante del SIDA. El premio se ha repartido de manera que el alemán se ha llevado un 50% del total y los franceses se han repartido la otra mitad.

FÍSICA

Han sido galardonados tres físicos japoneses por sus investigaciones en la importancia de las asimetrías en la Física y en la historia del Universo. Algo leí ayer (la Física no es mi fuerte) sobre ésto: el hecho de que, por ejemplo, hubiera asimetría entre la cantidad de materia y antimateria (que hubiera tan sólo una partícula de materia más) desencadenó la destrucción de la antimateria y el hecho de que ahora todo el universo (estrellas, planetas, los que habitamos los planetas…) esté formado por materia. Los nombres de los premiados: Yoichiro Nambu, Makoto Kobayashi y Toshihide Maskawa. También el reparto del premio ha sido parecido al de medicina: 50% para el primero y otro 50% para los dos últimos.

QUÍMICA

Estructura de la GFP
Estructura de la GFP

Como hablamos ayer en clase, es más premio en Bioquímica que en Química…pero igualmente muy interesante. Lo han ganado tres científicos estadounidenses (Osamu Shimomura, Martin Chalfie y Roger Y. Tsien) por el descubrimiento de la proteína verde fluorescente (también conocida como GFP, de Green Fluorescent Protein). La proteína, bajo la luz ultravioleta emite una característica luz verde (que le da nombre), lo cual la hace muy útil para seguir procesos biológicos y actualmente se usa mucho (también otras proteínas del mismo tipo descubiertas más tarde) para estudios de Bioquímica, Ingeniería Genética… En este caso el premio se ha repartido equitativamente entre los tres científicos.


Un saludo a todos,

Fernando

Fuentes: El País (Química) | El País (Física) | El País (Medicina) | Wikipedia | Nobelprize.org
Imágenes: Wikipedia | Nobelprize.org